

III Semester B.Sc. Examination, November/December 2017 (CBCS) (2017 – 18 and Onwards) (Fresh) PHYSICS – III Electricity and Magnetism

Time: 3 Hours Max. Marks: 70

Instructions: Answer any five questions from each Part.

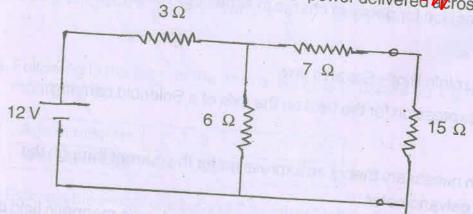
PART-A

Answer any five questions. Each question carries eight marks.	5×8=40)
1. a) Define an ideal voltage source and current source.	
b) State and prove maximum power transfer theorem.	(2+6)
Obtain an expression for decay of charge in series LCR circuit and mention special cases.	n its 8
3. a) State and explain Biot - Savart's law.	9
 b) Obtain an expression for the field on the axis of a Solenoid carrying current. 	(3+5)
 a) Obtain with necessary theory an expression for the current through the Helmholtz galvanometer. 	
 b) Using Ampere's circuitar law obtain an expression for the magnetic field to a straight conductor carrying conductor. 	d due (5+3)
5. a) State and explain Divergence theorem.	
b) Derive Maxwell's Equation $\nabla D = \rho$ and discuss its physical significance.	(2+6)
6. a) Obtain an expression for velocity of electromagnetic waves in free spa	ace.
b) State poynting theorem.	(6+2)
	P.T.O.

- 7. a) Derive with a diagram an expression for self inductance of a coil using
 - b) What is Q-factor? Explain its significance.

(5+3)

- 8. a) Distinguish between Seebeck effect and Peltier effect.
 - b) What is meant by Thermo electric diagrams? Discuss in detail any two of (2+6)


PART-B

Solve any five problem. Each problem carries four marks.

(5×4=20)

Permeability of free space $\mu_0 = 4\pi \times 10^{-7} \text{H m}^{-1}$ Permittivity of free space $t_0 = 8.8 \times 10^{-12} Fm^{-1}$

9. Using Thevenin's theorem calculate the power delivered α ross 15 α .

10. A 0.5 m long solenoid having 500 turns and radius 0.02 m is wound on an iron core of relative permeability 800. What will be the average emf induced in the solenoid if the current in it changes from 0 to 2 amp. in 0.05 sec.

Given $\mu_0 = 4\pi \times 10^{-7} \text{H m}^{-1}$.

11. A uniform magnetic field of magnitude 1.5 Tesla points horizontally from south to north. A proton of energy 5 MeV moves vertically downward through this field. Calculate the force on it.

Given mass of proton = 1.7×10^{-27} kg Charge = 1.6×10^{-19} C.

- A condenser of 1000 PF is charged to a potential difference of 1 volt and then discharged through a BG. The first throw on a scale placed away is 0.62 m. If the time period is 10 sec and logarithmic decrement is 0.02, calculate the ballistic constant of the galvanometer.
- 3. An ac voltage is applied directly across a 10 µ F capacitor. The frequency of the source is 3 kHz and the voltage amplitude is 30 V. Find the displacement current between the plates of the capacitor.
- Calculate the skin depth in copper of conductivity 5.8 x 10⁷ S m⁻¹ for the electromagnetic waves of frequency 1 m Hz.

Given $\mu = \mu_0 = 4\pi \times 10^{-7} \,\text{H m}^{-1}$

- 15. A circuit consists of a non inductive resistance of $50\,\Omega$, an explicit point of 0.3 H and resistance of 2 Ω , a capacitor of 40 μ F in series and is supplied with 200 V at 50 Hz. Find the impedance, I_{rms} and I_{max} in the circuit.
- 6. Calculate the neutral temperature, temperature of inversion and the total emf of a thermo couple between 0°C and 100°C for which the Seebeck coefficients are a = 10 μv/°C and b = -0.025 μv/°C².

PART-C

- Answer any five questions. Each question carries two marks. (5×2=10)
 - a) Can super position theorem be applied to non linear networks ? Explain.
 - b) Is there any loss of energy due to the production of back emf in an LR circuit ? Explain.
 - c) Does a current loop behave as a magnetic dipole? Explain.
 - d) Is the field produced in a toroid uniform? Explain.
 - e) Do magnetic monopoles exist? Explain.
 - f) Is it possible to have only electric wave or magnetic wave alone propagating through space? Explain.
 - g) What is the phase difference between the applied voltage and current in an LCR series ac circuit at resonance? Explain.
 - h) Does thermoelectric effect obey the law of conservation of energy? Explain.